Rheotaxis facilitates upstream navigation of mammalian sperm cells
نویسندگان
چکیده
A major puzzle in biology is how mammalian sperm maintain the correct swimming direction during various phases of the sexual reproduction process. Whilst chemotaxis may dominate near the ovum, it is unclear which cues guide spermatozoa on their long journey towards the egg. Hypothesized mechanisms range from peristaltic pumping to temperature sensing and response to fluid flow variations (rheotaxis), but little is known quantitatively about them. We report the first quantitative study of mammalian sperm rheotaxis, using microfluidic devices to investigate systematically swimming of human and bull sperm over a range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions, and chirality of the flagellar beat leads to stable upstream spiralling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilisation. A minimal mathematical model is presented that accounts quantitatively for the experimental observations.DOI: http://dx.doi.org/10.7554/eLife.02403.001.
منابع مشابه
Human sperm rheotaxis: a passive physical process.
A long-standing question in natural reproduction is how mammalian sperm navigate inside female reproductive tract and finally reach the egg cell, or oocyte. Recently, fluid flow was proposed as a long-range guidance cue for sperm navigation. Coitus induces fluid flow from oviduct to uterus, and sperm align themselves against the flow direction and swim upstream, a phenomenon termed rheotaxis. W...
متن کاملFluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis.
How does a sperm find its way? The study of guidance cues has fascinated sperm biologists and in particular the prospect of rheotaxis, that is a fluid flow orienting the direction of sperm swimming, has been the subject of extensive recent study, as readily motivated by the prospect that such guidance may be active in the mammalian female reproductive tract. For instance, it has been hypothesiz...
متن کاملBimodal rheotactic behavior reflects flagellar beat asymmetry in human sperm cells.
Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream swimming of mammalian sperm cells along solid surfaces, suggesting a robust physical mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself relative to an ambient flow is poorly understood. Here, we combine microfluidic expe...
متن کاملRheotaxis Guides Mammalian Sperm
BACKGROUND In sea urchins, spermatozoan motility is altered by chemotactic peptides, giving rise to the assumption that mammalian eggs also emit chemotactic agents that guide spermatozoa through the female reproductive tract to the mature oocyte. Mammalian spermatozoa indeed undergo complex adaptations within the female (the process of capacitation) that are initiated by agents ranging from pH ...
متن کاملOne rhinophore probably provides sufficient sensory input for odour-based navigation by the nudibranch mollusc Tritonia diomedea.
Tritonia diomedea (synonymous with Tritonia tetraquetra) navigates in turbulent odour plumes, crawling upstream towards prey and downstream to avoid predators. This is probably accomplished by odour-gated rheotaxis, but other possibilities have not been excluded. Our goal was to test whether T. diomedea uses odour-gated rheotaxis and to simultaneously determine which of the cephalic sensory org...
متن کامل